
2 ^°[~s>^ -o \
rD"v\C

Conditional Estimation of Vector Patterns

in Remote Sensing and GIS

Final Report

Principal investigator: Dr. J.M.F. Masuch

06 September 2000

United States Army
European Research Office of the U.S. Army

USADSG-UK, Edison House
223 Old Marylebone Road

London, NW1 5TH
England

Contract Number: N68171-97 C 9027

Approved for Public Release;distribution unlimited

CCSOM/Applied Logic Laboratory
PSCW-Universiteit van Amsterdam

Sarphatistraat 143
1018 GD Amsterdam

The Netherlands
tel: #.31.20.525 28 52

fax: #.31.20.525 28 00
e-mail: ccsoff@ccsom.uva.nl

R&D 8249-EN-01
Broad Area Announcement Proposal

submitted to the
Remote Sensing / GIS Center USACRREL

72 Lyme Road
Hanover, New Hampshire 03755 USA

DTIC QUAUTI INßBB®«H> 4

20001024 167

REPORT DOCUMENTATION PAGE
OMfl NO. Q?04.0t8$

n ——■ —»-■««««-•«.«..«- o —,—■• -.-,., —£ zzzzr.izxzzzr.zzzz -~ «T«,
1. AGCNCY USC ONUT ((.»JY« O/Jn«) S"eftöe«f>er 06,2oobJ-#¥fl&l"ffe^fr«*'t b6°>Sfcptember)
4. micANo-juinrit
Conditional Estimation of Vector Patterns
in Remote Sensing and GIS

i. AUfMOK(S)

Dr.J.M.F.Masuch

Z. fUNOlNG NUMSUS

N68171 97 C 9027

7. F-IRFORMING ORGANISATION NAMEISI ANO AOORCSJ(IS)

CCSOM / PSCW / University of Amsterdam
Sarphatistraat 143
1018 GD AMSTERDAM NL.

I. JlRfORMiNG O»GA«HA;ICN
RIPORT ,WUM«U

B"AA IIX 2ooo' 1
1. SPONSORING. MONITORING AG(NCY .NAMC(S) ANO AOORfSSUSI '.0. SPONSORING. MCNIICRI.fG

Act.vcY «?csr lUMiu

u. sumj.MiMAÄY .vom

U'J. eis:snu(iC;i/AVAikAtiuSY STAtiMuir i:a. Sis;siiu:'.c.'i ccci

1J. AIS7RACT (Mtitmum iOO—oiat) ———_______________

2. Abstract

Within this project report we provide the mathematical theory for the extraction of
primary topographic vectors using Bayesian statistical models. In particular, this effort
documents the mathematical foundations for the algorithms used within the C, C++
and JAVA computer languages, and further describes the related mathematical
techniques for the vector model and class structure. This final report also contains the
remaining C-code elements for the processing of digital (raster) data into a composite
vector model. While this research includes only the working prototypes and sample
code elements, it is anticipated that Corps researchers will use these examples to refine
their respective methods for use in water control, digital elevation modeling, and land
use analysis.

U. SUtMCT TtRMS

Remote Sensing, Statistics,
Artificial Intelligence, Neural Networks

17. SECURITY CLASSIFICATION
oi «I>ORT

Unclassified
MSN 7t'0-0l-Jt(MS00

IS. SECURITY ClASSinCAriO«
Of THIS PAGl

Unclassified

!?. SECURITY CLASSIFICATION
07 ABSTRACT

IS. NUM1EÄ Of ?AGtS

22>
1(. >RIG_C00E

?o. iiMiiAiiCHcr AssTJiC:

Sunfij/O *o<n .'5J ;R*. :j?l

m.n;

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

1. Title

Conditional Estimation of Vector Patterns in Remote Sensing and GIS:
Final Report

2. Abstract

Within this project report we provide the mathematical theory for the extraction of
primary topographic vectors using Bayesian statistical models. In particular, this effort
documents the mathematical foundations for the algorithms used within the C, C++,
and JAVA computer languages, and further describes the related mathematical
techniques for the vector model and class structure. This final report also contains the
remaining C-code elements for the processing of digital (raster) data into a composite
vector model. While this research includes only the working prototypes and sample
code elements, it is anticipated that Corps researchers will use these examples to refine
their respective methods for use in water control, digital elevation modeling, and land
use analysis.

3. Contents

Section 4 Introduction
Section 5 Performance Criteria
Section 6 Vector Recognition Accuracy
Section 7 Simulation Code
Section 8 Conclusions
Section 9 References

4. Introduction

page 2
page 4
page 6
page 7
page 17
page 18

A statement of the vector conversion model to be used will be made using traditional
statistical notation. It is assumed that there exists two statistical environments called
pattern class q and pattern class c2. For the purpose of this discussion, let c, be the
background image (in raster), and let c2 be the "potential" vector class that requires
"identification" and "conversion".

Each environment is also characterized by a constant c, but unknown probability
distribution exists over the n discrete values of the pattern measurement variable x.

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

Namely, P(x; | c,) is the probability of measurement value x; occurring in environment
c, (background) for I = 1, 2, ... , n image samples. Similarly, the unknown distribution
P(Xj | c2) characterizes x under the second environment c2 (the new vector class).
Vector measurements will be discussed following our introduction to the formal
mathematical model.

By unknown, it is meant that no prior information whatever is given on the 2n scalars
P(xi|ci).

Any pair of distributions is equally likely a priori. Sample pattern data from the
environments is to be measured to estimate the actual P(Xj | q) existing in any specific
recognition problem (the sample relative frequencies will be used).

Hence, the only constraints are that all probabilities be non-negative with closure to
unit probability. This may be formally stated as:

hi<P(x1 | c,)> = hi<P(xi | c2)> = l (1)

A prospective vector is admitted to the proper set if the incremental increase in scalar
measure satisfies a well-defined statistical test of significance (error probability
measure). The J measure shown in Equation (2) is an excellent basis criteria since it
varies with the squared distance between the means of the two classes normalized by
the combined covariance matrices:

J = Oil - ixi)' x (Ai + Ai)"' x (HI - iii) (2)

and
\x and A denote the mean and covariance respectively.

Whenever a measurement x is made, there is a known prior class probability P(C[) that
class c, is in effect and P(x; | q) applies. With the complementary probability Pc2 = 1-
Pq , class c2 and P(Xj | c2) are in effect. However, the particular class in effect for a
pattern is not known; only the value x, extracted from the multispectral data set.
Indeed, even the number of bands within this data set may vary.

The vector identification problem is to design a recognition rule to predict (recognize)
the pattern class most likely to be in effect for each of the n possible measurement

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

values of Xj. Its theoretic solution is known to be a maximal class recognition accuracy
using Bayes Rule.

Specifically, this rule is to:

Predict c, when xi occurs if P(C[| x;) > P(c2 | Xj); (3)
and Predict c2 otherwise.

The superficially simple rule states to choose the more probable class, given the
measurement value x; which has occurred. The resultant correct recognition probability
accuracy is then:

Pcr(n, PCl r) = ^ < [maxj > P(Cj | x,)] P(Xj) > (4)

Where
hj < maXj P(Cj | x;) and hj < maXj P(Xi | Cj) Pc >

Note that no assumption of measurable statistical independence is made. Please recall
from our earlier development within Interim Report 4, that the independence was
required to derive the C-code and related statistical libraries.

Within this new context, a vector of r discrete measurements, each having nk values
(k=l,2,.., r) is clearly evident to a single measurement with:

n = nin2...nr. (5)

Although the unknown probabilities P(x; | Cj) must actually be statistically estimated
from the finite pattern sets (carefully selected from within the original raster data set),
the limiting case of known probabilities (m = <*>) may be developed to show asymptotic
properties for larger data sets (raster or vector).

5. Performance Criteria

A standard procedure for evaluating the performance of a probability model is the
expected or mean Bayes recognition accuracy over all possible environmental
probabilities P(x; | Cj). Namely, no prior information on each scalar P(x; | c) is
assumed before the sample pattern data are measured. Any set of 2n positive real

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

probability values is equally likely provided the condition in Equation (2) is met. If any
such set were made more likely than another, then the criterion would emphasize the
accuracy of that particular recognition problem (for example band collinearity). Instead,
the criterion is to weigh equally all recognition problems having given values of P(c,)
andn.

It should be remarked that (Pq) is explicitly exhibited as a parameter because
recognition rule performance should be judged against a minimum accuracy of max:
(Pc,, 1- Pcj) using no prior measurements. If Pq lies near zero or unity, then any
recognizer should have nearly 100 percent accuracy.

Hence, the Bayes accuracy of: hj < max, P(x; | c) Pc is a statistic, in that it is a function
of the random variables (extracted from the image plane):

Ui ~ P(Xj | c,) and vj ~ P(Xj | c2) i = 1, 2,.. n (6)

To compute its mean or expected value, first note that the u; and v{ are uniformly
distributed due to the "equally likely" assumption of the model:

dP(u,,u2, ...,un,vI,v2,...,vn) =
N du, du2... dun.[dv, dv2... dvn_, (7)

Where only 2(n-l) differentials appear on the right of Equation (7) because the two
normalizing constraints in Equation (1) fix u„ and vn in terms of the other remaining
elements.

Now, the boundaries of the (n-1) order distribution of the u, alone are given by the
intersection of the hypercube 0» u; • 1, i = 1, 2, .. n-1, and the symmetric orthogonal
hyperplane:

hj < Uj > = 1; such that

0«Ui»l, i = 1,2, ..n-1 (8)

Note that the constraining Equation (8) is a direct result of Equation (1). An identical
boundary structure holds for the V;, so that the normalizing constant N in Equation (7) is
obtained from:

l=N[J01duJ01.u, du, J01.u,.u2du3 -i0,l-ul-u2-..un-2dun.l] X

[f 0,ldvi Jo,l-vl dv2^0,l-vl-v2 dv3 -f 0.1-vl.v2-..vn-2 dVn-l 1 (9)

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

However, the two iterated integrals may be easily evaluated giving

N = [(n-1)!]2 (10)

As shown, Equation (10) is a very simple factorial model that is quickly coded as a C-
code element for row and matrix estimation:

s[lml] = Fact_j.colnrm2_j(n-l+l,x,lml,lml);
if (s[lml] != 0.0) {

if (x[lml][lml] != 0.0) s[lml] = Fact_j.sign_j(s[lml],x[lml][lml]);
Factj.colscal_j(n-l+l,1.0/s[Iml],x,lml,lml);

x[lml][lml]++;

s[lml] = -s[lml];
for(j = l;j<p;j++){

if ((1 <= net) && (s[lml] != 0.0)) {
t = -FactJ.coldoq(n444,x,lmlMl,j)/x[lml][lml];

Fact_j.colaxpy_j(n-l+l,t,x,lml,lml,j);

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

6. Vector Recognition Accuracy

Equation (9) is the recognition accuracy given U; and V;, and is multiplied by Equation
(7) to obtain a joint probability. This is integrated over the u^Vj range to get the mean
accuracy. After careful simplification, we find that:

Pcr (n, Pc,) = n [(n-1)!]2\01! 0, (1- u,)"'2 (1- v,)""2]

xmax (Pc, u,, Pc2 v,) du,dv, (11)

By requiring that Pq • Pc2 without loss of generality, the v, integral in Equation (11)
may be broken into two ordinary integrals:

a. Over the range 0 • v, • Pq u,/ Pc2,

and

b. All remaining regions outside v ,.

The region defined by item (b). requires an integration by parts. The u, integral may be
evaluated as a beta function plus a second, somewhat cumbersome integral whose
integrand may be expanded by the binomial theorem and integrated term by term
giving:

Pcr (n, Pc,) = Pc, + Pc2(n-1) (Pc,/ Pc/
hj < n! /[j! (n-j)! (2n-j-l) { Pc, /(1-2 Pc,) }'] (12)

for Pc, • Pc2

And, for the common case where Pq = Pc2 = 0.5, Equation (13) reduces to the specific
form

Pc. (n, 0.5) = 3n-2 / 4n-2 (13)

Note that each recognition accuracy begins at max(Pq, 1- Pc,) for n=l in that a single
measurement value must always occur and therefore imparts no information (it simply
increases with the complexity of each measurement).

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

The algorithm shown in Equation (12) is near asymptotic maximum recognition
accuracy for all n > 2. The ordinal value is significantly less than 100 percent unless
P(Cj) is near zero or unity. The inflection occurs nears n=nc as the number of pattern
classes defined increases within the image volume. The asymptotic maximum
accuracy(of this algorithm) is obtained by letting n approach infinity in Equation (11)
yielding:

Pcr (n = oo, PCl) = Pc, + P2c2 = Pc2 + P2c, = 1 - Pq Pc2 (14)

7. Simulation Code

The mathematical results shown in Equation (14) have been tested using C-language
models for pattern recognition and vector extraction. A cube is defined as described in
Equation (8), namely h; < u; = 1 >; such that 0» u{ • 1, i = 1, 2,.. n-1. Classes are
selected, reduced, and combined using the geometric "spinning" of vectors in n-space.
This procedure is used to randomize the input elements (as a Monte-Carlo simulation).
The vector cubes are tested using conditional probability measures as described in
Equation (13). Equation (14) is applied when class probabilities are equal to 0.5. The
complete simulation engine is programmed for Sun Solaris (Unix) applications.

* FUNCTION: UNIX_XArg_Main

* INPUTS: hXARG_ - XARG_ module handle
* dwReason - reason being called (e.g. process attaching)
* lpReserved - reserved
*

* RETURNS: TRUE if initialization passed, or FALSE if initialization failed.
*■

* COMMENTS: On XARG_PROCESS_ATTACH registers the VECTORCUBECLASS

* XARG_ initialization serialization is guaranteed within a
* process (if multiple threads then XARG_ entry points are
* serialized), but is not guaranteed across processes. *
* When synchronization objects are created, it is necesaary
* to check the return code of GetLastError even if the create

call succeeded. If the object existed, ERROR_ALREADY_EXISTED
* will be returned.

* If your XARG_ uses any C runtime functions then you should
* always call _CRT_INIT so that the C runtime can initialize
* itself appropriately. Failure to do this may result in
* indeterminate behavior. When the XARG_ entry point is called

for XARG_PROCESS_ATTACH & XARG_THREAD_ATTACH circumstances,

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

_CRT_INIT should be called before any other initilization
is performed. When the XARG_ entry point is called for
XARG_PROCESS_DETACH & XARG_THREAD_DETACH circumstances,
_CRT_INIT should be called after all cleanup has been
performed, i.e. right before the function returns.

BOOL UNIX_XArg_Main (HANDLE hXARG^ DWORD dwReason, LPVOID IpReserved)

{
ghMod = hXARG_;
switch (dwReason)
{
case XARG_PROCESS_ATTACH:
I
WNDCLASS wc;

if (LCRTJNIT (hXARG_, dwReason, IpReserved))

return FALSE;
wc.style = CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS | CS_OWNDC |

CS_GLOBALCLASS;
wc.lpfnWndProc = (WNDPROC) VectorcubeWndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = VECTORCUBE_EXTRA;
wc.hlnstance = hXARG_;
wc.hlcon = NULL;
wc.hCursor = LoadCursor (NULL, IDC_ARROW);
wc.hbrBackground = NULL;
wc.lpszMenuName = (LPSTR) NULL;
wc.lpszClassName = (LPSTR) VECTORCUBECLASS;

if (IRegisterClass (&wc))
(
MessageBox (NULL,

(LPCTSTR) "XArg_Main(): RegisterClass() faüed",
(LPCTSTR) "Err! - VECTORCUBE.XARGJ',
MB_OK | MBJCONEXCLAMATION);

return FALSE;
)
break;

case XARG_PROCESS_DETACH:
(
if (!_CRT_INIT (hXARG_, dwReason, IpReserved))
return FALSE;

if (lUnregisterClass ((LPSTR) VECTORCUBECLASS, hXARG_))
(
MessageBox (NULL,

(LPCTSTR) "XArg_Main(): UnregisterClassO failed",
(LPCTSTR) "Err! - VECTORCUBE.XARGJ',
MB_OK | MBJCONEXCLAMATION);

return FALSE;
)
break;

)

10

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

default:

if (LCRTJNIT (hXARG^ dwReason, lpReserved))
return FALSE;

break;
)
return TRUE;

/***af.**\

BOOL UNIX_MOTIF_CRT_INIT (HINSTANCE hXARG_, DWORD dwReason, LPVOID lpReserved);

// Declared below are the module's 2 exported variables.
//
// giNum Vectorcubes. This Process is an instance variable that contains
// the number of (existing) Vectorcube controls created by the
// current process.
//
// giNumVectorcubesAllProcesses is a shared (between processes) variable
// which contains the total number of (existing) Vectorcube controls
/ / created by all processes in the system.
//
//

int ,declspec(XArg_export) giNumVectorcubesThisProcess = 0;
#pragma data_seg(".MYSEG")

int declspec(XArg_export) giNumVectorcubesAllProcesses = 0;
#pragma data_seg()

/ / Some global vars for this module
//

HANDLE ghMod; //XARGJs module handle
LPCCSTYLE gpccs; // global pointer to a CCSTYLE structure

CCSTYLEFLAGA aVectorcubeStyleFlags[] = {{ SS_ERASE, 0, "SS_ERASE"),
(SSJNMOTION, 0, "SSJNMOTION" 1);

/**\
*

* FUNCTION: UNIX_CustomControlInfoA

* INPUTS: acci - pointer to an array od CCINFOA structures

* RETURNS: Number of controls supported by this XARG_
*
* COMMENTS: See CUSTCNTL.H for more info
*
\ ***

UINT UNIX_CALLBACK CustomControlInfoA (LPCCINFOA acci)
{
//
/ / Dlgedit is querying the number of controls this XARG_ supports, so return 1.
/ / Then well get called again with a valid "acci"
//

11

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

if (!acci)

return 1;

//
// Fill in the constant calues.
//

acci[0].flOptions = 0;
acci[0].cxDefault =40; //default width (vector units)
acci[0].cyDefault =40; //default height (vector units)
acci[0].flStyleDefault = WS_CHILD |

WS_VISIBLE |
SSJNMOTION;

acci[0].flExtStyleDefault = 0;
acci[0].flCtrlTypeMask = 0;
acci[0].cStyleFlags = NUM_VECTORCUBE_STYLES;
acci[0].aStyleFlags = aVectorcubeStyleFlags;
acci[0].lpfnStyle = VectorcubeStyle;
acci[0].lpfnSizeToText = VectorcubeSizeToText;
acci[0].dwReservedl = 0;
acci[0].dwReserved2 = 0;

//
// Copy the strings (Segmented Vector Measurements within a "string" data structure - Very
/ / Compressed!
//
// NOTE: MAKE SURE THE STRINGS COPIED DO NOT EXCEED THE LENGTH OF
/ / THE BUFFERS IN THE CCINFO STRUCTURE!
//

lstrcpy (acci[0].szClass, VECTORCUBECLASS);
lstrcpy (acci[0].szDesc, VECTORCUBEDESCRIPTION);
lstrcpy (acci[0].szTextDefault, VECTORCUBEDEFAULTTEXT);

//
/ / Return the number of controls that the XARG_ supports
//

return 1;

* FUNCTION: UNIX_VectorcubeStyle
*
* INPUTS: hWndParent - handle of parent window (dialog editor)
* pecs - pointer to a CCSTYLE structure
*
* RETURNS: TRUE if success,
* FALSE if error occured
*
* LOCAL VARS: re - return code from DialogBox
*

12

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

BOOL CALLBACK UNIXJ/ectorcubeStyle (HWND hWndParent, LPCCSTYLE pecs)

I
intrc;

gpecs = pecs;

if ((re = DialogBox (ghMod, "VectorcuheStyle", hWndParent,
(DLGPROC)VectorcubeDlgProc)) == -1)

(
MessageBox (hWndParent, (LPCTSTR) "VectorcubeStyle(): DialogBox failed",

(LPCTSTR) "Err!- Vectorcube.XArgJ',
MB.OK | MBJCONEXCLAMATION | MB_APPLMODAL);

rc = 0;
1

return (BOOL) re;

/**\
*

* FUNCTION: UNIX_VectorcubeSizeToText
*

* INPUTS: flStyle - control style
* flExtStyle - control extended style
* RFont - handle of font used to draw text
* pszText - control text
*
* RETURNS: Width (in pixels) control must be to accomodate text, or
* -1 if an error occurs.

* COMMENTS: Just no-op here (since we never actually display text in
* the control it doesn't need to be resized).
*
\ ** /

INT CALLBACK UNIX_VectorcubeSizeToText (DWORD flStyle, DWORD flExtStyle,
HFONT hFont, LPSTR pszText)

I
return -1;

/ **

FUNCTION: UNIXJ/ectorcubeWndProc (standard window procedure INPUTS/RETURNS)

COMMENTS: This is the window procedure for our custom control. At
creation we alloc a VECTORCUBEINFO struct, initialize it,
and associate it with this particular control. We also
start a timer which will invalidate.).

*** *********** / \

LRESULT CALLBACK UNIX_Vectorcube WndProc
(HWND hwnd, UINT msg, WPARAM wParam,

LPARAM IParam)

f
switch (msg)

13

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

case WM_CREATE:
i
II
II Alloc & init a VECTORCUBEINFO struct for this particular control
//

HDC hdc;
LPCREATESTRUCT lpcs = (LPCREATESTRUCT) lParam;
PVECTORCUBEINFO pSCI = (PVECTORCUBEINFO) LocalAlloc (LPTR,

sizeof(VECTORCUBEINFO));
if(!pSCI)
(
MessageBox (NULL,

(LPCTSTR) "VectorcubeWndProc(): LocalAUoc() failed",
(LPCTSTR) "Err! - VECTORCUBE.XARGJ',
MB_OK | MBJCONEXCLAMATION);

return -1;

//
// Alloc the compatible DC for this control.
//
hdc = GetDC (hwnd);

if ((pSCI->hdcCompat = CreateCompatibleDC (hdc)) == NULL)
1
MessageBox (NULL,

(LPCTSTR) "VectorcubeWndProcO: CreateCompatibleDC() failed",
(LPCTSTR) "Err! - VECTORCUBE.XARGJ',
MB_OK | MBJCONEXCLAMATION);

return-1;
)
ReleaseDC (hwnd, hdc);

//
// Initialize this instance structure
//

pSCI->fCurrentXRotation =
pSCI->fCurrentYRotation =
pSCI->fCurrentZRotation = (float) 0.0;

pSCI->fCurrentXRotationInc =
pSCI->fCurrentYRotationInc =
pSCI->fCurrentZRotationInc = (float) 0.2617; //a random # (15 degrees)

pSCI->iCurrentXTranslation =
pSCI->iCurrentYTranslation =
pSCI->iCurrentZTranslation = 0;

//
//All these calculations so the cubes start out with random movements.
//

if ((pSCI->iCurrentXTranslationInc = (rand() % 10) + 2) > 7)

pSCI->iCurrentXTranslationInc = -pSCI->iCurrentXTranslationInc;

if ((pSCI->iCurrentYTranslationInc = (rand() % 10) + 2) <= 7)

pSCI->iCurrentYTranslationInc = -pSCI->iCurrentYTranslationInc;

14

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

if ((pSCI->iCurrentZTranslationInc = (rand() % 10) + 2) > 7)

pSCI->iCurrentZTranslationInc = -pSCI->iCurrentZTranslatiorünc;

pSCI->rcCubeBoundary.left =
pSCI->rcCubeBoundary.top = 0;
pSCI->rcCubeBoundary.right = lpcs->cx;
pSCI->rcCubeBoundary .bottom = lpcs->cy;

pSCI->iOptions = VECTORCUBE_REPAINT_BKGND;
pSCI->hbmCompat = NULL;

SetWindowLong (hwnd, GWLJVECTORCUBEDATA, (LONG) pSCI);

SetTimer (hwnd, VECTORJSVENT, VECTORJNTERVAL, NULL);

//
// Increment the count vars
//

giNumVectorcubesThisProcess++;
giNumVectorcubesAllProcesses++;

break;
I

case WM_PAINT:

Paint (hwnd);
break;

case WMJTIMER:

switch (wParam)
(
case VECTOR_EVENT:
I
PVECTORCUBEINFO pSCI = (PVECTORCUBEINFO) GetWindowLong (hwnd,

GWLJVECTORCUBEDATA);

InvalidateRect (hwnd, &pSCI->rcCubeBoundary, FALSE);

break;

break;

case WM_LBU1TONDBLCLK:
(
//
// Toggle the erase state of the control
//

if (DO_ERASE(hwnd))

SetWindowLong (hwnd, GWL.STYLE,
GetWindowLong (hwnd, GWL_STYLE) & ~SS_ERASE);

else

15

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

{
II
11 Repaint the entire control to get rid of the (cube trails) mess
//

PVECTORCUBEINFO pSCI = (PVECTORCUBEINFO) GetWindowLong (hwnd,
GWL_VECTORCUBEDATA);

SetWindowLong (hwnd, GWL_STYLE,
GetWindowLong (hwnd, GWL_STYLE) | SS_ERASE);

pSCI->iOptions | = VECTORCUBE_REPAINT_BKGND;
InvalidateRect (hwnd, NULL, FALSE);
SendMessage (hwnd, WM_PAINT, 0, 0);

1
break;

case WM_RBUTTONDBLCLK:
(
//
// Toggle the motion state of the control
//

if(IN_MOTION(hwnd))
{
KillTimer (hwnd, VECTOR_EVENT);
SetWindowLong (hwnd, GWL_STYLE,

GetWindowLong (hwnd, GWL_STYLE) & -SSJNMOTION);
)
else
(
SetTimer (hwnd, VECTOR_EVENT, VECTORJNTERVAL, NULL);
SetWindowLong (hwnd, GWL_STYLE,

GetWindowLong (hwnd, GWL_STYLE) | SSJNMOTION);

break;
)

case WM_SIZE:

if (wParam == SIZE_MAXIMIZED | | wParam == SIZE_RESTORED)
(
PVECTORCUBEINFO pSCI = (PVECTORCUBEINFO) GetWindowLong (hwnd,

GWLJ/ECTORCUBEDATA);
//
// Get a new bitmap which is the new size of our window
//

HDC hdc = GetDC (hwnd);
HBITMAP hbmTemp = CreateCompatibleBitmap (hdc,

(int) LOWORD (IParam),
(int) HIWORD (IParam));

if (IhbmTemp)
(
//
// Scream, yell, & committ an untimely demise...
//

MessageBox (NULL,
(LPCTSTR) "VectorcubeWndProc(): CreateCompatibleBitmapO failed",
(LPCTSTR) "Err! - VECTORCUBE.XARGJ',

16

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

MBOK | MBJCONEXCLAMATION);
DestroyWindow (hwnd);

1

pSCI->hbmSave = SelectObject (pSCI->hdcCompat/ hbmTemp);
if (pSCI->hbmCompat)

DeleteObject (pSCI->hbmCompat);
ReleaseDC (hwnd, hdc);
pSCI->hbmCompat = hbmTemp;

//
// Reset the translation so the cube doesn't go vectorning off into
/ / space somewhere- we'd never see it again!
//

pSCI->iCurrentXTranslation =
pSCI->iCurrentYTranslation =
pSCI->iCurrentZTranslation = 0;

//
// All these calculations so the cube starts out with random movements,
//

if ((pSCI->iCurrentXTranslationInc = (rand() % 10) + 2) > 7)

pSCI->iCurrentXTranslationInc = -pSCI->iCurrentXTranslationInc;

if ((pSCI->iCurrentYTranslationInc = (rand() % 10) + 2) <= 7)

pSCI->iCurrentYTranslationInc = -pSCI->iCurrentYTranslationInc;

if ((pSCI->iCurrentZTranslationInc = (rand() % 10) + 2) > 7)

pSCI->iCurrentZTranslationInc = -pSCI->iCurrentZTranslationInc;

pSCI->rcCubeBoundary.left =
pSCI->rcCubeBoundary.top = 0;
pSCI->rcCubeBoundary.right = (int) LOWORD (lParam);
pSCI->rcCubeBoundary.bottom = (int) HIWORD (lParam);

pSCI->iOptions | = VECTORCUBE_REPAINT_BKGND;

InvalidateRect (hwnd, NULL, FALSE);
1

break;

case WM.DESTROY:
(

UNIX_PVECTORCUBEINFO pSCI = (PVECTORCUBEINFO) GetWindowLong (hwnd,
GWL_VECTORCUBEDATA);

//
// Clean up all the resources used for this control
//

if (IN_MOTION(hwnd))

KillTimer (hwnd, VECTOR_EVENT);

SelectObject (pSCI->hdcCompat, pSCI->hbmSave);
DeleteObject (pSCI->hbmCompat);

17

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

DeleteDC (pSCI->hdcCompat);

LocalFree (LocalHandle ((LPVOID) pSCI));

//
// Decrement the global count vars
//

giNumVectorcubesThisProcess-;
giNumVectorcubesAllProcesses-;

break;

default:

return (DefWindowProcfhwnd, msg, wParam, lParam));
)

return ((LONG) TRUE);

*
* FUNCTION: UNIX_VectorcubeDlgProc (standard dialog procedure INPUTS/RETURNS)
*

* COMMENTS: This dialog comes up in response to a user requesting to
* modify the control style. This sample allows for changing
* the control's text, and this is done by modifying the
* CCSTYLE structure pointed at by "gpccs" (a pointer
* that was passed to us by dlgedit).
*

LRESULT CALLBACK VectorcubeDlgProc (HWND hDlg, UINT msg, WPARAM wParam,
LPARAM lParam)

{
switch (msg)
{
case WMJNITDIALOG:
(
if (gpccs->flStyle & SS_ERASE)

CheckDlgButton (hDlg, DID_ERASE, 1);

if (gpccs->flStyle & SSJNMOTION)

CheckDlgButton (hDlg, DIDJNMOTION, 1);

break;
)

case WM_COMMAND:

switch (LOWORD(wParam))
(
case DID_ERASE:

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

if (IsDlgButtonChecked (hDIg, DID_ERASE))

gpccs->flStyle | = SS_ERASE;

else

gpccs->flStyle &= ~SS_ERASE;

break;

case DIDJNMOTION:

if (IsDlgButtonChecked (hDIg, DIDJNMOTION))

gpccs->flStyle | = SSJNMOTION;

else
gpccs->flStyle &= -SSJNMOTION;

break;

case DID_OK:

EndDialog (hDIg, 1);
break;

1
break;

1
return FALSE;

1

\ **

19

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

8. Conclusions

Within this final report we outline the mathematical criteria used to separate
background elements from foreground vectors. The procedures are firmly grounded in
accepted statistical theory using standard methods for evaluating the accuracy and
precision of the class structure. While the mathematics are quite difficult, the resultant
models are shown to be highly recursive (factorial models). Hence, these recognition
tools are easily programmed using recursive loops within the C, C++, and Java
prograrnming languages. The computer code shown within this report builds upon C-
code trails defined within Interim Report 5 and Interim Report 6.

As described in this report, basic results have been drawn from the statistical model of
pattern recognition by using mean value and expected value arguments. Most
interesting is the existence and size of an optimal measurement complexity, as well as, a
maximum acceptable accuracy. If all pattern probabilities were known in advance, the
recognition accuracy would be expected to be nearly maximal if n > nc = 2 (nc being the
number of pattern classes). For example, more than 20 possible measurement values
gives little additional aid in making a simple decision between two dichotomous
classes. On the other hand, one can easily envision a vector pattern having ten
component measurements of ten possible values each. From Equation (4), this gives 1010

, or some twenty billion cell probabilities to estimate, merely to classify patterns into
two simple class categories.

Sometimes this mapping can be found by reconsidering the physical origin of the
recognition problem; for example, masking polygons in terms of priority before
submitting all spectral bands to the vector model. Next, individual measurement
reduction may be performed on the remaining vectors. For example, suppose the ten
values of each vector are reduced to two by forming individual recognition functions.
Since the five rules will usually disagree, a final measurement combination of the 25

values must be made. This value of 32 is not far above the optimum of 23, so that a
combining recognition rule can be computed by Equation (13) for a final class
prediction.

It should be emphasized that these simulations of mapping measurements selection,
reduction, and combination are not proposed as final solutions to the multi-class vector
estimation problem. Rather, they are illustrative of a framework for further
investigation and application. Also of interest would be an extension of the present
analysis to nc > 2 classes. This is of no conceptual difficulty, yet a general equation
giving P(cr) (n, m, nc, Pq) for all nc has not been found.

20

Conditional Estimation of Vector Patterns in Remote Sensing and GIS
Final Report

R&D 8249-EN-01

9. References

Bruce, A.G., Donoho, D.L., Gao, H.Y., and Martin, R.D. (1994). Smoothing and robust wavelet

analysis. In: Dutter, R. and Gossmann, W. (1994). COMPSTAT-Proceedings in Computational

Statistics-11'" Symposium held in Vienna, Austria, 1994. Heidelberg: Physika verlag, 532-547.

Bruce, A. G., and Gao, H-Y. (1996). Applied wavelet analysis with S-Plus. New York/Berlin:

Springer Verlag.

Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Communications in

pure and applied mathematics, 41, 909-996.

Daubechies, I. (1992). Ten lectures on wavelets. CBMS-NSF, Regional Conference Series in Applied

Mathematics, 61, Philadelphia (PA): SIAM.

Koornwinder, T.H. (ed.). (1993). Wavelets: An elementary treatment of theory and applications.

Singapore: World Scientific Publishing Co., Inc.

Meyer, I. (1990). Ondelettes et Operateurs I. Paris: Hermann.

Murtagh, F., Aussem, A., and Kardaun, O.J.W.F. (1996). The wavelet transform in multivariate

data analysis. In: Prat, A. (Ed.) Proceedings in computational statistics 1996. Heidelberg: Physica-

Verlag. pp 397-402.

Olde Daalhuis, A.B. (1993). Computing with wavelets. In: Koornwinder, T.H. (ed.), (1993), pp 93-

105.

Press, W.H. (1991). Wavelet transforms. Harvard-Smithsonian Center for Astrophysics, No. 3184,

preprint.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. (1992). Numerical recipes in C.

The art of scientific computing, (2nd edition), Chapter 13. Cambridge: Cambridge University Press.

Smith, C, Pyden, N., and Cole, P., (1995). Erdas field guide. 3rd edition. Atlanta (GA): ERDAS, Inc.

Strang, G. (1989), Wavelets and dilation equations: a brief introduction, SIAM Review, 31
(1989), 614-627.

21

